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NOMENCLATURE 

‘4 area ; 
a, dimensionless wave number relating 

to critical Rayleigh number: 
A\“‘, Aim’, B\m’, B$““, coefficients of equation (16) ; 
c 
d,m’ 

coefficient of equation (14); 
height of liquid layer [cm] ; 

JA differential operator, defined as 
d/dx: ; 

t function associated with W and H, 
equations (lOa, lob); 

9. gravitational acceleration [cm/s’] ; 
h, heat-transfer coefficient; 
H, quantity associated with tempera- 

ture disturbance, equation (10a); 
H*, 

k 
m. 

n, 
N R&7, 

(N,t.)er> 
Q. 

T, 
AT, 

U 
Pm 

Vi. 

quantity associated with H, equa- 
tion (18); 
thermal conductivity; 
consistency index in Power-law 
model [gs”cm-‘1; 
flow behavior in Power-law model; 
Rayleigh number, defined by equa- 
tion (9); 
critical Rayleigh number; 
amount of thermal energy trans- 
ferred across liquid layer; 
total power input as registered by 
Wattmeter; 
temperature PC] ; 
temperature difference between 
lower and upper plates; 
quantity related to W, according to 
equation (15); 
velocity vector [cm/s] ; 

v+, 

v*. 

W, 

w+ , 

W, 

X;. 

Greek symbols 
a, 
A,. 

A;, 

E”> 

K, 

P$ 

:;, 

5*, 

0, 
o+. 

dimensionless velocity vector as de- 
fined in equation (8b); 
dimensionless velocity vector as de- 
fined in equation (19); 
velocity component along x3 direc- 
tion [cm/s] ; 
dimensionless velocity component 
along xs direction ; 
quantity associated with velocity 
disturbance, see equation (lob): 
coordinate [cm]. 

thermal expansion coefficient [ l/“C] ; 
rate of deformation tensor [l/s], see 
equation (4); 
dimensionless rate of deformation 
tensor, see equation (8d) 
kinetic energy dissipated by the 
viscous force; 
internal energy released due to 
buoyancy force ; 
thermal diffusivity [cm’/s]; 
density [g/cm”] ; 
stress tensor; 
dimensionless stress tensor, see equa- 
tion (8e); 
dimensionless stress tensor, see equa- 
tion (21); 
temperature disturbance PC] ; 
dimensionless temperature distur- 
bance. 

THE STABILITY criterion based on linear analysis for the 
t Department of Chemical Engineering, University 

of Delaware. 
onset of convection of a horizontal liquid layer with linear 
temperaturedensity relationship was first given by Rayleigh 
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[S]. Rayleigb showed that the onset of convection occurs 
if the value of a certain dimensionless parameter (i.e. 
Rayleigh number) exceeds its critical value. Rayleigh 
number is defined as 

gaAT.d3 
N,, = ___ 

KY 
(1) 

Rayleigh’s analysis was made for the case of two free 
boundary surfaces. Subsequent investigators [3, 41 have 
considered more realistic situations. An excellent account 
of this problem can be found in the treatise of Chandrasekhar 

[ll. 
The heightened interests in non-Newtonian fld dis- 

played of recent years make it natural to extend this stability 
study to non-Newtonian systems. Besides Its academic 
interest, study of this type will also be important in terms 
of its rheological significance. The observation of the onset 
of convection provides a potentially useful way of determin- 
ing the limiting viscosity. The stability analysis carried out 
in this work will also be useful in determining the adequacy 
of a given rheological model in describing the free convection 
phenomenon. 

In carrying out the present work, it was decided to use 
Powerlaw model for the characterization of non-Newtonian 
behavior. Although many objections have been raised 
against its use, the inescapable fact remains that this model 
gives a reliable representation for an important aspect of 
non-Newtonian behavior (i.e. variable viscosity) for a large 
number of systems over a wide range of shear rates. Further- 
more, its relative simple form facilitates the necessary 
computation work. 

The classical approach in carrying out the stability 
analysis is the use of linear stability theory. This approach. 
however, is not suitable to non-Newtonian fluid with 
nonlinear constitutive equations. Another possible approach 
is the use of finite differences method. However, for a non- 
Newtonian fluid, the difference equations of the equation of 
motion would be highly nonlinear, and requires excessive 
computation. This, in turn, may make the method im- 
practical. 

A somewhat less involved method can be developed 
based upon the thermodynamic significance of the critical 
Rayleigh number obtained from the linear stability theory 
for Newtonian fluids. Chandrasekhar [l] stated : 

“Instability occurs at the minimum temperature gradient 
at which a balance can be steadily maintained between 
the kinetic energy dissipated by viscosity and the internal 
energy released by the buoyancy force.” 

Although this statement is based upon the result of linear 
stability theory and for Newtonian fluid, it is plausible to 
assume that this is at least approximately correct for all 
fluids, Based on this hypothesis a stability criterion for 
non-Newtonian fluid can be developed This is discussed 
in later sections. 

ANALYSIS 

The analysis given in this work is concerned with a 
horizontal layer of incompressible non-Newtonian fluid 
of depth d and confined between two horizontal parallel 
surfaces imposed at a temperature of Tl (at lower surface) 
and T2 (at upper surface), respectively. The equation of 
state of the fluid and the rheological equation of state are 
assumed to be respectively as 

P = pO[l - a(T - %)I (2) 
7 = m[&Ll:Ll)“-‘1 A. (3) 

The meaning of symbols are given in nomenclature. In 
Cartesian tensor notation, A is given as 

n,++g.. (4) 
J 1 

For a column of fluid with unit cross section, the kinetic 
energy dissipated by the viscous force, E, and the internal 
energy released due to buoyancy force, Ed, can be expressed 
as (2) : 

E, = - j<v.(V.r))dx, 
cl 

;: P 

(5) 

Eg=pga 
J 

(&v)dz= -y 
I 

(tW%) dx, (6) 

0 0 

AT = T, - T2 (7) 

The xj coordinate is measured as distance away from the 
lower surface (i.e. z = 0, at lower surface). The brackets, 
( ), refers to the average quantity over a given x-y plane. 

First, the following dimensionless quantities are intro- 
duced : 

@b) 

Xi x,? zz - 
d 

(84 

A? =av++av,’ 
.J ax; ax+ 

T+ = {&A+ :A+)]}“-’ A+. (84 

By equating equations (5) and (6) and expressing the results 
in terms of the dimensionless quantities, after some re- 
arrangement, one has 

j (v+ [A+ T+]) dx: 
N _ mrx(Wd*“+’ o 

JZa - = (9) 
k-i /<O+V+2e+)dx: 

0 
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equation (9), provided suitable expressions for v+ and P 
number. If the thermodynamic principle on the onset of 
convection, stated in the previous section, is assumed to be 
valid, the critical Rayleigh number can be evaluated from 
Equation (9), provided suitable expressions for v+ and 6+ 
at marginal state are available. 

B\m’ = 3 [a - 

Aim) = - y [sinh* a 

(-l)“+‘sinha] (16b) 

- (-l)“+‘asinha] (16c) 

The marginal expression can be written as (2) : 

0+ = H(x:) j-(x:, x;, 

w+ = v: = W(x;) j-(x:, x;, 

(1Oa) 

Bim’ = 7 [(sinh a cash a - a) - (- l)“‘+l 

(lob) 
(a cash a - sinh a)] (16d) 

where ,f is a two-dimensional periodic function of x: and 
and 

xi. The other velocity components, according to [2], are: A = sinh’a - a2 (17) 

Two additional dimensionless quantities will be intro- 
(101~) duced here. They are : 

m 

H.+ (18) 
1 

m=1 
The operator, D, denotes d/dx:. The subscript XT refers to 

V+ 

the partial differentiation with respect to the variable. v* = 
C,(N,,X,a’ 

(19) 
If one assumes that the marginal solutions of the Newtonian 

case is applicable, H and Ware solutions of the following 
differential equations: Combining equations (9) (14), (15) (18) and (19). one has, 

p~a(AT)d’+‘” -CT l W~o)rr 4 ~rwconianl”+ 1 j <v* (V’ T*)> dx: 
NR, = 

0 
= 

K”m 
(f ‘> j [(OH*)* + a’H*‘] dx; 

0 

(D* - a*)‘H = - (N,,),p2H 

(D’ - a’)H = - W 

with the boundary conditions: 

H= W=O, xi =Oandl 

DW=O, xi =Oandl. 

(11) and 

(12) 

(13a) 

(13b) 

f* = I&A*: A*)J”-‘A* 

A;=s+g. 
I I 

(20) 

(21) 

v-4 

The critical Rayleigh number is given as 1707.76 at a = 3.117. Equation (20) provides the basis of calculation of the critical 
H and Ware given as: Rayleigh number. The detailed description is given in the 

H = ,f C,sinmnx: W = (N&P’ f Gnu, 
next section 

(14) 
m=, IPI= 

m 

c C, 
= (1707.76)(3.117)’ [A’;“’ cash ax; 

COMF’UTATION WORK - 
(m2n2 + a*)’ Before proceeding with the computation of critical 

VI=, Rayleigh number, the cell pattern of flow prevailed at the 

+ 4’;‘~: cash ax: + B\“’ sinh ax: + Bim’xi sinh ax: 
onset of convection needs to be known This means the 
functional form of f has to be specified Two cases will be 

+ sin mnx:] (15) considered They are : 

The coefficients, A!‘“), etc., are given as (a) Two-dimensional roll- f is given as : 

,p = 0 (164 f = cosax: (23) 
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and 

fxt = - a sin XT, fit = 0. (25) 

(b) Three-dimensional hexagonal cell-For this case. f is 

given as Christopherson [Z], 

(26) 

The length of the side of the hexagonal cell, L, is related to 

the wave number. a. as 

4n 
a=- 

3L 
(27) EXPERIMENTAL WORK 

and 

numerical procedure involved in this calculation is of 

sufficient accuracy. 

For values of n other than unity, the critical Rayleigh 

number computed on the basis of two-dimensional roll 

is found to be consistently lower than that based on hexagonal 

cell. The critical Rayleigh number is known to be independent 

of flow pattern. This discrepancy may be caused either by the 

inadequacy of the basic assumption of the thermodynamic 

significance on the onset of convectlon or due to the use of 

marginal state solutions for Newtonian case or both The 

difference between these results is only moderate and, on 

the average, is of the order of 10 per cent which is comparable 

with the experimental work of Schmidt and Milverton (6) 

for Newtonian fluid, but somewhat inferior to those of 

Silverton (8). This rather moderate difference seems to 

indicate that the results obtained in this work is of sufficient 

accuracy and can be used for predicting purposes. 

Experimental study was carried out to verify the results of 

the approximate stability analysis given above. The de- 

1 

=- 

6 
(28) 

Once f+ is known, the dimensionless velocity components 

vf can be obtained from equations (lOa)-(lOc) and equation 

(19), from which the rate of deformation tensor can be= 

evaluated accordingly. This, in turn, enables the calculation 

of r* in terms off+ and W [equations (21) and (22)]. Once 

these quantities are known, they can be substituted into 

equation (20) for the evaluation of critical Rayleigh 

number. The integration is carried out using Simpson’s rule 
and using xi = &. The infinite. series is approximated by 

taking m = 4. For both cases, the computation was made for 

n ranging from unity to 0.4. 

It should be mentioned that the coellicient C,‘s for the 

expression of the amplitude of temperature deviation. H, 

[see equation (14)] can be determined only to a factor, i.e. 

the results of linear theory yield expressions of C JC,. It is 
arbitrarily decided to take C, = 1. The justification of this 

assumption can only be made in terms of agreement be- 

tween the predicted value of the critical Rayleigh number and 

experimental results, This will be discussed in later sections. 

Numerical values of the critical Rayleigh number vs the 

flow behavior index obtained for both cases are shown in 

Fig. 1. For the special case of n = 1. the predicted value of 

the critical Rayleigh number are 1707.57 for both cases. 

The predicted value according to linear stability theory is 

1707.76. This close agreement seems to indicate that the 

Hexagonal model 

Two dimensional model 

Experimental results 

102 ’ I I I I 
0.5 0.6 0.7 0.6 0.9 I.0 

n 

FIG. 1. 

tection of the onset of convection of a horizontal layer of 

Newtonian fluid heated from below has been studied exper- 

mentally by a number of investigators [b8]. Most of these 
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studies were based on the principle developed by Schmidt 
and Milverton [6] which can be briefly described as follows : 
consider a horizontal liquid layer with depth d and heated 
from below. If the temperature difference between the lower 
and upper surfaces, AT, is plotted against the amount of 
thermal energy across the layer, Q, a linear relationship 
would be obtained as long as the mode of heat transfer is 
conduction. The slope of this straight line is simply given as 
AT/Q = d/Ak, where k is the thermal conductivity of the 
fluid A in the surface area of the layer. On the other hand, if 
convective motion prevails within the liquid layer, the 
quantity AT/Q becomes AT/Q = l/Ah, where h is the heat- 
transfer coefficient Since l/h is always less than that of 
d/k, an abrupt change in the slope of the curve AT vs. Q 
indicates the commencement of convective motion. 

Apparatus 
The experimental apparatus was designed to approximate 

the idealized situation of a horizontal layer of liquid of infinite 
extent confined between two rigid horizontal surfaces with 
heating from below. The test chamber consists ofa rectangular 
space. The base of the chamber is provided by an electrical 
heater plate and the sides by four walls which are formed by 
cutting a rectangular hole 8 by 6 in. in a $ in. thick piece of 
phonolitic plastic. The upper surface is provided by a 4 in. 
thick glass plate. The glass plate is carried on ball bearings 
resting in slots which are placed into positions cut along the 
four sides of the rectangular holes of the phonolitic plate. 
By using slots of diflerent heights, the depth of the liquid 
layer can be changed. The lower surface temperature is 
measured by copper-constantan thermocouples embedded 
in the heater plate at a depth of& in. below the metal-liquid 
interface. The temperature of the glass-liquid interface was 
determined by two thermocouples which are placed through 
small holes drilled through the glass plate. The detailed 
description of the apparatus is given elsewhere [9] and will 

not be repeated here. The schematic diagram of the apparatus 
is shown in Fig 2 

Material 
Aqueous solutions of carboxy-methyl-cellulose were used 

in this work which included 0.75 % CMC-74,1.2 % CMC-74, 
5 % CMC-7L, 5.5 % CMC-7, and 7% CMC-7L2 manu- 
factured by Hercules Chemical Company. In addition, 
glycerin was used in the preliminary measurement in order 
to check the accuracy of the apparatus. 

For the evaluation of critical Rayleigh number from experi- 
mental data, a number of physical properties need to be 
determined The rheological properties of the aqueous CMC 
solutions were determined using a Brookfield Synchro- 
Lectric viscometer over a shear range of 10-l to 10’ see-’ 
and temperature range of 2&60%, and they are fitted with 
Power-law model. The thermal conductivity was determined 
with an apparatus of Briggs’ type. The thermal expansion 
coefficient was obtained from density-temperature relation- 
ship with the density data obtained through the use of a 
pycnometer. Heat capacities were also measured but were 
found to differ only slightly from those of water. The details 
of these determinations are described in [9]. 

RESULTS 

For a given series of experiments, eight to ten sets of 
readings were obtained. These readings were equally 
divided into conduction and convection. The temperature 
difference from a few degrees (“C) up to 16°C was maintained, 
corresponding to a power input up to 40 W. The average 
time required for each reading was from a few hours up to 
20 hr. It was found that the attaiument of steady-state was 
greatly influenced even by very small change in ambient 
temperature. 

For each series of measurements, a set of readings of 

Q rorol vs. AT was obtained. The quantity, Qto,,,,. represents the 

t 
City 

Coking 
Coil 

FIG. 2. 
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total power input registered by the wattmeter and is the 
sum of the thermal.energy transmitted across the liquid layer 
and that dissipated to the surroundings through the under- 
side and edges of the heater plate. However, as shown in 
earlier investigations [6, 73, for the purpose of detecting 
the change in slope of the curve of Q vs. AT, it is not necessary 
to correct for the heat loss and one can use the quantity, Q,,,, 
directly. A typical set of data is shown in Fig 3. 

A summary of all experimental results is given in Table 1. 
The temperature difference, AT corresponding to the onset 
of thermal instability is obtained by drawing best-fit lines 
visually through the data points and the intersection points 
of the two linear segments give the values of AT at onset of 
convection. The physical properties for calculation (N,& 
equation (9), were evaluated at the average temperature of the 
liquid layer [i.e. T,,. = (TI + T,/2)]. Comparison with 
theoretical results is shown in Fig. 3. The experimental 
results agree substantially with the results based upon the 
approximate analysis with the exception of one case (5.5 “//, 
CMC-7L) The error involved is the experimental observation 
and can be judged by the comparison of the values of critical 
Rayleigh number obtained for the case of glycerin vs. the 
accepted theoretical value of 1706. It, therefore, appears to be 

plausible that the (at least a large part of) difference between 
the experimental results and theoretical values can be 
attributed to experimental errors. 
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FIG. 3. 

Table 1. Summary of experimental data 

Solution Glycerin 0.75 %-CMC-7H 1.2%~CMC-7H 5 %-CMC-7L 7 %-CMC-7L2 5.5 %-CMC-7L 

d (ft) 0.0521 0.073 00875 0.0875 09521 0.0965 
T, (“F) 91.5 89.5 109.0 114.0 81.0 86.4 
AT (“F) 5.05 3.51 10.4 10.61 15.8 13.8 
n 1.0 0.94 0.85 0.7 0.93 0.75 
m x 10e3/lbm/hft 1.19 1.331 9.34 2.14 1.333 2.866 
k, Btu/hft”F 0.165 0.353 0.375 0.391 0.367 0.334 
C, Btu/lb m “F 0.589 1.0 1.0 1.0 1.0 1.0 
p. lbm/ft’ 78.45 62.17 63.3 6308 64.07 63.60 
fi x 104/lpR 3.0 306 246 2.74 1.5 1.77 
Rae 1621.6 1420.0 776.7 3720 12200 329.45 


